Vildagliptin Plus Dapagliflozin As A Combination Therapy for Type 2 Diabetes: The Indian Perspective

Dr. Hiren Prajapati¹, Dr. Sujay Bodade²

¹Assistant general manager- Medical affairs, ²Medical Advisor – Medical affairs Eris Lifescience Ltd, Ahmedabad.

Introduction:

The prevalence of diabetes is increasing worldwide; mainly, the prevalence is very high in South Asian countries. India has 77 million diabetes cases, the epicenter of diabetes for the reasons.1 Though the prevalence of diabetes is higher both in urban and rural areas but in recent years, diabetes has shown a comparatively steeper rise in an urban settings. Rapid changes in dietary practices and greater physical inactivity could be the reason behind this. ICMR-INDIAB study has demonstrated that Indian people are most likely to get diabetes in their early phase of life (25- to 34year age group).2 One study found that 69% of patients had not achieved the target level of HbA1c.³ Non-compliance to lifestyle measures and multiple other factors are responsible for suboptimal glycemic control among Indians. Treatment adherence is very important for effective glycaemic control and achieving the target HbA1c. A study found that a 10% increase in adherence to diabetes medication can reduce HbA1c by 0.1%.4

In the Indian diabetes setting, a plethora of anti-diabetes medications is available in the form of fixed-dose combinations (FDC) for the treatment of diabetes. Drug adherence and treatment outcomes can be improved by using rational FDC in the management of diabetes because it reduces pill burden, enhances compliance, and at the same time, patients may their target HbA1c faster monotherapy.⁵ Many long term studies like Action to Control Cardiovascular Risk in Diabetes (ACCORD), Action in Diabetes and Vascular disease study the Preter Ax and Diamicro N-MR Controlled Evaluation (ADVANCE), Veterans Affairs Diabetes Trial (VADT) suggested that

intensive glycaemic control is associated with a reduction in microvascular and other complications which are responsible for morbidity and mortality among diabetes patients.^{6,7,8} Despite having good glycemic control, the risk of cardiovascular death persists; hence, addressing this defect by utilizing drugs in the management with proven cardiovascular benefits is of utmost importance.

Vildagliptin as oral incretin-based therapy is increasingly used in managing T2D (type 2 diabetes) as an alternative or add-on therapy to glucose-lowering agents, sulphonylureas. They offer the advantage of an excellent safety profile with no increased risk of hypoglycemia, weight gain, and cardiovascular events.9Dapagliflozin has demonstrated cardiorenal benefits and has raised considerable interest among diabetologists and cardiologists. However, the underlying mechanisms of protection remain largely unknown.¹⁰ Fixed-dose combinations (FDCs) of these drugs have been recently commercialized, which could facilitate therapy and improve compliance of patients with T2D.

This article is focused on a review of the studies conducted in the past on the combination of SGLT2i and DPP4i in T2DM management. It highlights the rationale for using this combination therapy in Indian T2DM patients.

Pathophysiological approach to diabetes management:

Current glucose-lowering therapy options target one or more of the eight metabolic and endocrine defects (the ominous octet) underlying the pathophysiology of T2D. These include decreased insulin secretion, reduced incretin effect, increased lipolysis, increased

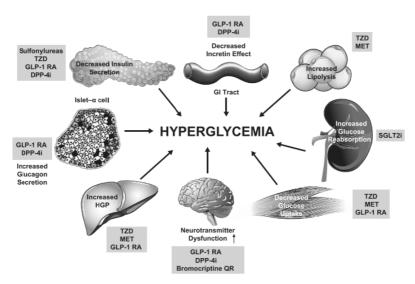


Figure 1. The ominous octet showing the mechanism and site of action of glucose-lowering medications based on pathophysiologic disturbances present in T2DM (adapted from Gude D et.al.¹¹)

glucose reabsorption, decreased glucose uptake, neurotransmitter dysfunction, increased hepatic glucose production, and increased glucagon secretion. Our better understanding of the pathophysiology of diabetes has enabled a continual churn out of newer antidiabetic agents with varying modes of action. Sodium-Glucose Transport Proteins-2 inhibitors, dipeptidyl peptidase IV inhibitors, glucagon-like peptide analogs, either as monotherapy or combination therapy with the existing oral hypoglycemic agents compound our fight against diabetes. 11

DPP-4i =dipeptidyl peptidase-4 inhibitor; GI=gastrointestinal; GLP-1 RA=glucagon-like peptide-1 receptor agonist; HGP =hepatic glucose production; MET =metformin; QR =quick release; SGLT2i = sodium glucose cotransporter 2 inhibitor; T2DM = type 2 diabetes mellitus; TZD =thiazolidinedione

Current Challenges of T2DM in India:

Glycemic control in India is poor and this has resulted in a high prevalence of complications. Based on A1chieve study conducted on 66,726 T2DM patients, mean HbA(1c) at time of presentation was 9.2% far away from the HbA1 goal of < 7%. Diabetes control was worse in those with longer duration of diabetes (9.9 +/- 5.5 years). This emphasizes the fact that effective

control of T2DM is urgently needed to prevent or reduce the risk of developing the complications of diabetes Indian T2DM patients.11 in Epidemiological analysis of the UK prospective diabetes study (UKPDS) data showed that for every 1% reduction in HbA1c, the relative risk for microvascular complications decreased by 37%, diabetes-related deaths by 21%, and myocardial infarction by 14%.6 Hence, early and more aggressive (intensive glucose control) is the strategy to improve patient's chances of reaching HbA1c goal.

Hypoglycemia as a Factor Behind Clinical Inertia:

Although careful selection and titration of anti-diabetic agents can achieve a good glycemic control without significant risk for hypoglycemia, a common limitation of intensive glucose lowering therapy is an increased risk for hypoglycemia. Consequently, today type 2 diabetes is associated with a substantial incidence rate of hypoglycemia. Hypoglycemia has a negative impact for the wellbeing of the patients, both in the short-term and the long-term. In addition, hypoglycemia also carries a high cost, not only for the individual patient, but also for the health care system and society at large. 12 The risk for hypoglycemia is also an important factor underlying clinical inertia,

which is a key consequence of inadequate glycemic control in patients with type 2 diabetes. Strategies to mitigate the risk of hypoglycemia include awareness of the condition; education of patients, relatives, and health care providers; and selecting appropriate glucose lowering medication that also judges the risk for hypoglycemia to prevent this complication.¹²

Asian Indian Phenotype & Role of Oral Glucose Lowering Agents (OADS):

Indians have distinct clinical biochemical deformities, which make them the socalled 'Asian Indian Phenotype'. These abnormalities include higher insulin resistance, elevated abdominal adiposity (i.e., higher visceral fat in spite of lower body mass index [BMI]), lower level of adiponectin, higher level of high sensitive C - reactive protein, total GLP-1 level varied from low to normal after meal, low Intact GLP-1 level and Enhanced DPP-4 activities in plasma so, called Indian Incretin Axis. 13,14 Moreover, Asian Indians have an increased metabolic risk compared to their counterparts; because of a) the existence of high leptin levels; b) leptin concentration is a significant indicator of body fat (P < 0.0001), hip circumference, and fasting insulin; c) greater insulin resistance; d) higher insulin sensitivity index and lower acute insulin response to glucose; e) early loss of beta cell function; f) 'thin-fat Indian concept' or 'sarcopenic obesity' (Asian Indians have thinner limbs [smaller muscle mass] with central obesity, with a higher waist-to-hip ratio and higher subscapular-to-triceps skin fold ratio than their British counterparts, which leads to higher insulin resistance); more people suffer from diabetes at a relatively lower BMI compared with those of European descent; elevated mean A1C level (9.0%), which is 2.0% higher than the target suggested by international bodies.14

SGLT2i and DPP4 inhibitors could produce multiple benefits in Indian diabetes patients. Table 1 & 2 shows the list of challenges faced by Indian patients and describes how

SGLT2i and DPP4i could overcome the challenges.

Table 1. Evolving role of SGLT2i in Indian phenotype with T2DM ¹³

Challenges with Indian	Relevant SGLT2i						
patients	features						
Higher abdominal	↓ Body weight (more						
adiposity and visceral fat	visceral fat mass loss than						
at any given body mass index	subcutaneous fat loss)						
Higher waist	↓ Waist circumference						
circumference and waist							
to hip ratio							
Impaired insulin secretion	↓ Improve b-cell						
and increased insulin	function ↓ and insulin						
resistance	resistance						
Low level of adipokine	↓ Both triglycerides and						
and high plasma leptin	leptin						
increases concentrations							
of triglycerides							
Low rate of glucose	↑ Rate of glucose disposal						
disposal							

Table 2. Evolving role of DPP4i in Indian phenotype with

T2DM 14

Challenges with Indian patients	Relevant SGLT2i features					
Low adiponectin level in T2DM	Increased adiponectin level					
High insulin resistance due to hypoadiponectinemia in T2DM	Improved insulin resistance					
Low level of adipokine and high plasma leptin increases concentrations of triglycerides	Both triglycerides and leptin					
Low intact GLP-1 levels and low GLP-1 response after meals	Strengthen GLP-1 response after meals					
Enhanced DPP-4 activities in type 2 diabetes	Suppress DPP4 activities in T2DM patients					

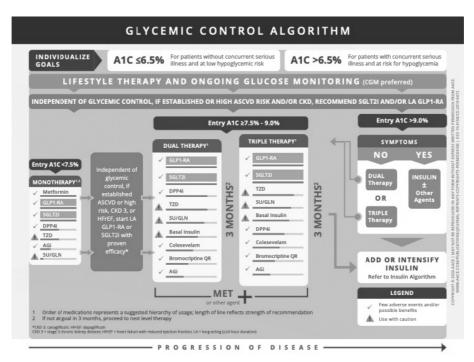


Figure 2. 2020 AACE Comprehensive Type 2 Diabetes Management Algorithm (adapted from Garber AJ et.al.¹⁵)

Guideline Recommendations:

Both American Association of Clinical Endocrinologists (AACE) 2020 and American Diabetes Association (ADA) 2022 guidelines have recommended the combination of SGLT2i and DPP4i therapy for T2DM patients when either of monotherapy is not sufficient to achieve HbA1c target < 7%. At the time of diagnosis, when

	MET	GLP1-RA	SGLT2i	DPP4i	AGi	TZD (moderate dose)	SU	COLSVL	BCR-QR	INSULIN	PRAM
НҮРО	Neutral	Neutral	Neutral	Neutral	Neutral	Neutral	Moderate/ Severe Mild	Neutral	Neutral	Moderate to Severe	Neutra
WEIGHT	Slight Loss	Loss	Loss	Neutral	Neutral	Gain	Gain	Neutral	Neutral	Gain	Loss
RENAL / GU	Contra- indicated if eGFR <30 mU/min/ 1.73 m²	Exenatide Not Indicated CrCl <30 Potential Benefit of	Not Indicated for eGFR <45 mL/ min/1.73 m² See #1 Genital Mycotic Infections	Dose Adjustment Necessary (Except Linagliptin) Effective in Reducing Albuminuria	Neutral	Neutral	More Hypo Risk	Neutral	Neutral	More Hypo Risk	Neutra
GI Sx	Moderate	LA GLP1-RA	Benefit; See #1 Neutral	Neutral	Moderate	Neutral	Neutral	Mild	Moderate	Neutral	Modera
CHF	Neutral	Neutral	Prevent HF Hospitalization Manage HFrEF; See #2	See #4	Neutral	Moderate	Neutral	Neutral	Neutral	CHF Risk	Neutral
ASCVD		Potential Benefit of LA GLP1-RA	See #3			May Reduce Stroke Risk	Possible ASCVD Risk	Lowers LDL-C	Safe	Neutral	
BONE	Neutral	Neutral	Neutral	Neutral	Neutral	Moderate Fracture Risk	Neutral	Neutral	Neutral	Neutral	Neutra
KETOACIDOSIS	Neutral	Neutral	DKA Can Occur in Various Stress Settings	Neutral	Neutral	Neutral	Neutral	Neutral	Neutral	Neutral	Neutra

Figure 3. AACE - Safety profiles of SGLT2i and DPP4i: Neutral effect on hypoglycemia risk (adapted from Garber AJ et.al¹⁵)

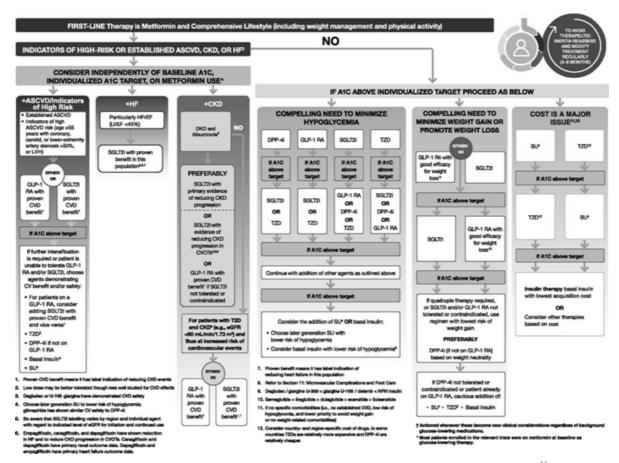


Figure 4. 2022 ADA Comprehensive Type 2 Diabetes Management Algorithm (ADA guidelines 2022¹⁶)

HbA1c is ≥7.5% - < 9% - combination of SGLT2i and DPP4i is recommended by AACE 2020 guideline for T2DM management. 15,16

Therapeutic Rationale of SGLT2I and DPP4I Combination:

There is a strong rationale for combining a DPP-4i and an SGLT2i in patients with T2D

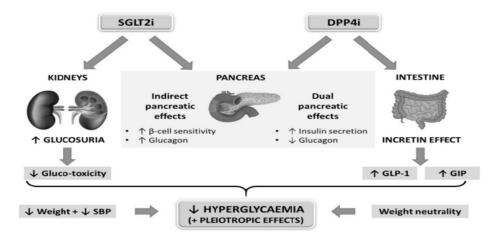


Figure 5. Illustration of the complementary glucose-lowering activities of DPP-4 inhibitors (DPP-4i) and SGLT2 inhibitors (SGLT2i) in type 2 diabetes. (adapted from Scheen et.al.¹⁷)

The Journal of the Association of Physicians of Tamil Nadu, Vol. 1, Issue 2, English Quarterly, April – June 2022

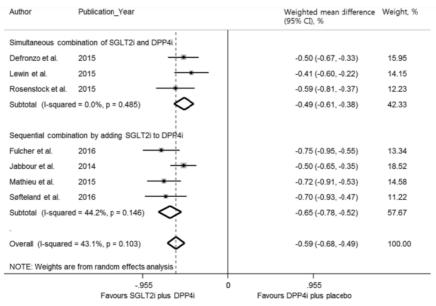


Figure 6. Meta-analysis for the primary efficacy outcome (adapted from Min SH et.al. 18)

because the two drugs exert different and complementary glucose-lowering effects. Dual therapy (initial combination or stepwise approach) is more potent than either monotherapy in patients treated with diet and exercise or already treated with metformin. Combining the two pharmacological options is safe and does not induce hypoglycemia (figure 3), weight gain, and the potential for cardiovascular protection. The addition of a DPP-4 inhibitor which inhibits glucagon and stimulates insulin secretion, may have the potential to block the increase in endogenous glucose production and enhance the glucose-lowering ability of SGLT2. (Figure 5) These findings suggest that combining a DPP-4i with an SGLT2i would potentially provide additional help to individuals with T2D in reaching their glycemic goal. Beyond a glucoselowering effect, SGLT2i have some added value with reductions in body weight (including abdominal adiposity), blood pressure, and serum uric acid, all markers considered independent cardiovascular risk factors. Thus, combination treatment with a DPP-4i and/or SGLT2i appears to be an attractive option for patients with T2D starting pharmacological therapy or for patients who are already treated with a glucose-lowering agent, especially metformin, but require additional

medications to improve glycemic control further. A lesser genito-urinary infection has been observed with combination therapy compared to SGLT2 inhibitors monotherapy. No drug-drug interaction between SGLT2i and DPP4i.¹⁷

SGLT2I + DPP4I FDCs: Clinical Evidence Overview

Evidence from a meta-analysis suggests that SGLT2i + DPP4i FDCs are effective and safe in controlling glycemic parameters in patients with T2DM. It was a meta-analysis of randomized controlled trials (RCTs) that compared the SGLT2 the DPP4 inhibitor inhibitor plus (SGLT2i/DPP4i) with placebo plus the DPP4 inhibitor (PCB/DPP4i) in patients with type 2 diabetes concurrently treated with or without other antidiabetic agents were included. The study showed that SGLT2i/DPP4i led to greater improvement in HbA1c than PCB/DPP4i (WMD -0.59%, 95% CI -0.68 to -0.49%). Both simultaneous combination and sequential addition of SGLT2 inhibitors to DPP4 inhibitors showed a greater reduction in HbA1c than the respective PCB/DPP4i group (WMD -0.49%, 95% CI -0.61 to -0.38%, and WMD -0.65, 95% CI -0.78 to -0.52%, respectively). 18

RELATIVE RISK OF GTI

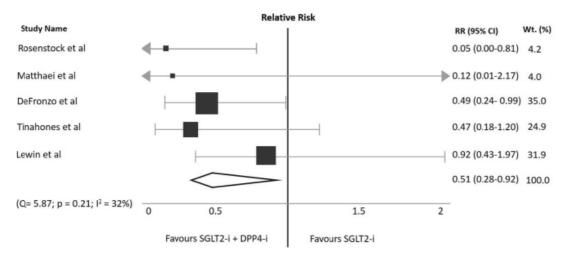


Figure 7: Incidence of genitourinary tract infections favors the use of the SGLT2i + DPP4i fixed-drug combination. CI Confidence interval, GTI genitourinary tract infection, RR relative risk. (Adapted from Fadiniet al.¹⁹)

The study also showed that the combination of the SGLT2i/DPP4i group did not increase the risk of hypoglycemia (RR 1.0, 95% CI 0.4–2.8). The risk of genital infection was increased in the sequential combination subgroup (RR 5.57, 95% CI 2.33–13.333) but not in the simultaneous combination subgroup (RR 1.35, 95% CI 0.55–3.34).¹⁸

A systematic review and meta-analysis of seven RCTs involving 2082 participants with a duration of at least 12 weeks) investigated the effect of SGLT2i + DPP4i therapy in patients with T2DM. All seven studies assessed the risk of urinary tract infections (UTIs) and GTIs at the end of the treatment. The risk of a UTI was found to be slightly higher in the group receiving sequential combination therapy (relative risk [RR] 0.96, 95% confidence interval [CI] 0.52-1.78) than in the simultaneous combination group (RR 0.67, 95% CI 0.28-1.60). The risk of a GTI was also higher in the sequential combination group (RR 5.57, 95% CI 2.33–13.33) than in the simultaneous group (RR 1.35, 95% CI 0.55-3.34). Overall, the results of this analysis suggest a possible lower risk of GTIs and nominal reduction in the incidence of UTIs with the simultaneous combination as opposed to a sequential combination of SGLT-2i and DPP-4i.19.

Conclusion:

Type 2 diabetes is a progressive disease that creates a need for earlier and more aggressive intervention to improve patients' chances of reaching treatment goals. Indian diabetes patients are different with respect to phenotypes where OADs like SGLT2i and DPP4i are the best suitable options with a low risk of hypoglycemia. ADA and AACE guidelines on diabetes management have recommended combination of SGLT2i and DPP4i to manage diabetes. Clinical data also shows effectiveness, safety, and tolerability in Indian diabetes patients and DPP4i for diabetes using SGLT2i management. Dapagliflozin plus Vildagliptin FDC offers safe, rapid, and sustained glycemic control, improves insulin resistance and beta-cell function, helps to reduce body weight and blood pressure (extraglycemic benefits), reduces pill burden (adherence and compliance improves) and is costeffective. Thus Vildagliptin and Dapagliflozin FDC would be a good choice for diabetes management and lifestyle modifications.

References

 Anjana RM, Pradeepa R, Deepa M, et al. The Indian Council of Medical Research-India Diabetes (ICMR-INDIAB) study: methodological details. J Diabetes Sci Technol. 2011;5:906–14

The Journal of the Association of Physicians of Tamil Nadu, Vol. 1, Issue 2, English Quarterly, April – June 2022

- Anjana RM, Pradeepa R, Deepa M, et al. ICMRINDIAB Collaborative Study Group. Prevalence of diabetes and prediabetes (impaired fasting glucose/ impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-India DIABetes (ICMR-INDIAB) study. Diabetologia. 2011;54:3022–7.
- 3. Hills AP, Arena R, Khunti K, et al. Epidemiology and determinants of type 2 diabetes in south Asia. Lancet Diabetes Endocrinol. 2018;6(12):966–78.
- Gopinath D, Mathew J, Kalra S. Triple fixed drug combinations in type 2 diabetes. Indian J EndocrMetab. 2015;19(3):311–3
- Gupta YK, Ramachandran SS. Fixed dose drug combinations: Issues and challenges in India. Indian J Pharmacol. 2016;48(4):347–9
- King P, Peacock I, Donnelly R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J ClinPharmacol. 1999;48(5):643–8
- Buse JB, ACCORD Study Group. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods. The American journal of cardiology. 2007 Jun 18;99(12):S21-33.
- Saremi A, Bahn G, Reaven PD, VADT Investigators. Progression of vascular calcification is increased with statin use in the Veterans Affairs Diabetes Trial (VADT). Diabetes care. 2012 Nov 1;35(11):2390-2.
- Scheen AJ. A review of gliptins for 2014. ExpOpinPharmacother 2015;16:43-62.
- Anderson SL. Dapagliflozin efficacy and safety: a perspective review. Therapeutic advances in drug safety. 2014 Dec;5(6):242-54.
- Mohan V, Shah S, Saboo B. Current glycemic status and diabetes related complications among type 2 diabetes patients in India: data from the A1chieve study. J Assoc Physicians India. 2013 Jan;61(1 Suppl):12-5

- Ahren Bo. Avoiding hypoglycemia: a key to success for glucose-lowering therapy in type 2 diabetes. Vasc Health Risk Manag. 2013; 9: 155–163.
- Singh AK, Unnikrishnan AG, Zargar AH, et al. Evidence-Based Consensus on Positioning of SGLT2i in Type 2 Diabetes Mellitus in Indians. Diabetes Ther (2019) 10:393–428
- Singh AK. Incretin response in Asian type 2 diabetes: Are Indians different? Indian J EndocrMetab 2015;19:30-8.
- Garber AJ, Handelsman Y, Grunberger G, et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm - 2020 executive summary. EndocrPract. 2020;26(1):107-139. doi:10.4158/CS-2019-0472.
- American Diabetes Association Diabetes Care 2022 Jan;
 44(Supplement 1): S111-S124. Link: https://care.diabetesjournals.org/content/44/Supplement_ 1/S111
- Scheen AJ. DPP-4 inhibitor plus SGLT-2 inhibitor as combination therapy for type 2 diabetes: from rationale to clinical aspects. Expert Opin Drug MetabToxicol. 2016 Dec; 12(12):1407-1417.
- 18. Min SH, et al. Combination of sodium-glucose cotransporter 2 inhibitor and dipeptidyl peptidase-4 inhibitor in type 2 diabetes: a systematic review with meta-analysis. Sci Rep. 2018 Mar 13;8(1):4466
- Fadini GP, Bonora BM, Mayur S, Rigato M, Avogaro A. Dipeptidyl peptidase-4 inhibitors moderate the risk of genitourinary tract infections associated with sodiumglucose co-transporter-2 inhibitors. Diabetes ObesMetab. 2018;20(3):740–4.