Platelets in Chronic Liver Disease: Beyond Number

Dr. Purushothaman Padmanabhan, Dr. Nagendram Dinakaran, Dr. Vamsi Chaitanya Gude, Dr. Syed Mohammed Akbar Hassan, Dr. Ravi Rajan

Meenakshi Medical College Hospital and Research Institute, Kancheepuram, Tamil Nadu

Abstract

Objectives: Thrombocytopenia, a complication of Chronic Liver Disease (CLD), is considered to be a marker of advanced disease and an independent predictor of mortality. But this is disputable, and hence is this study

- 1. To find out the prevalence of thrombocytopenia in CLD;
- 2. To find out association with severity of Liver disease and Thrombocytopenia.

Materials and Methods: This was a descriptive study analyzing CLD patients diagnosed by clinical, biochemical, serological, and radiological evaluation in our institution between March 2019 and December 2020.

Results: There were 48 patients; M: F43:5; mean age 51.7±12.4 years; Thrombocytopenia: Mild (149999 – 75000/mm³) in 45.8%, moderate (74999 – 50000/mm³) in 12.5% and severe (< 49999/mm³) in 8.3%. There was no association of thrombocytopenia with severity indices like Child-Pugh Class (C. P. C.) and Model for End-stage Liver Disease – Sodium (MELD-Na) Score.

Conclusion: The prevalence of thrombocytopenia in CLD is 66.6% in this study. Thrombocytopenia is not associated with the severity of the disease. This necessitates larger studies and analyzing the factors other than a number of platelets. This includes

- 1. Functional status of platelets (thrombocythemia)
- 2. In a stable CLD, homeostasis and coagulation pathways achieve a delicate "rebalance state" (new normal) which may be disturbed even by trivial insult.

3. Platelets also secrete platelet-derived growth factors, transforming growth factor β, hepatocyte growth factor, which can influence liver fibrosis and regeneration.

Keywords: Thrombocytopenia - chronic liver disease - portal hypertension - homeostasis - coagulation.

Introduction

Chronic liver diseases (CLD) cause significant mortality, morbidity, and health care expenditure. At least 3 million deaths occur globally every year due to CLD. Thrombocytopenia (< 150000 platelets/mm³) is one complication of CLD and occurs at a frequency of up to 76%.[1,2] The mechanisms of thrombocytopenia in CLD are multifactorial.[1,3] 1. Sequestration (trapping) of platelets occurring in the enlarged spleen, for example, hypersplenism, portal hypertension. 2. Direct splenic destruction. 3. Immunemediated destruction. 4. Hepatic dysfunction and subsequent reduction of hepatic synthesis of thrombopoietin, a cytokine factor that regulates development and maturation of megakaryocytes - the precursor of platelets. 5. It can be due to the suppression of thrombocytogenesis in bone marrow, such as alcohol, hepatitis C, interferon therapy, and folate deficiency. 6. Intra vascular volume expansion and subsequent dilution happen in resuscitation with crystalloids, colloids, and massive blood transfusion. [1,3]. 7. Pulmonary hypertension and pulmonary embolism can occur in CLD also cause thrombocytopenia because of platelet consumption.^[4] Pseudothrombocytopenia or false low platelet count is encountered when platelet clumping occurs when exposed to anticoagulant ethylene

diamine tetra-acetic acid.[4] Thrombocytopenia is described as mild when the platelet count is in the range of 75000-150000/mm³. It is reported up to 76% of CLD patients. Moderate thrombocytopenia (50,000 to platelets/mm³) occurs in about 13% and severe form (less than 50,000 platelets/mm³) reported in 1% of CLD patients. [1,2]. Platelet count can be used as a surrogate marker for the advanced stage of liver disease, especially fibrosis, by means of calculating APRI (Aspartate Aminotransferase to Platelet Ratio Index), NAFLD (Non-Alcoholic Fatty Liver Disease) score, FIB - 4 (Fibrosis - 4). These are simple, bedside reliable markers. Thrombocytopenia combined with splenomegaly can predict the presence of oesophageal varices as a non invasive marker. [5,6] Giannini et al. reported platelets count/spleen diameter ratio as an independent factor associated with the presence of large oesophageal varices.^[5] Alam R. et al. studied 84 children with CLD. They found low platelet count, and splenomegaly predicted the presence of oesophageal varices. On this basis, they suggested that screening endoscopy for varices can be focused on children with thrombocytopenia and splenomegaly that can reduce the workload of endoscopic units.^[6] Thrombocytopenia may pose problems with procedures done in CLD patients, especially liver biopsy, venous cannulation, liver transplantation. It may be necessary to correct platelet numbers by way of platelets transfusion before such procedures.[1,3,7,8] The treatment of hepatitis C with interferon is also affected. Dose modification or discontinuation is reported in 19% and 2% of patients, respectively, in chronic hepatitis C patients.[1] Novel therapeutic thrombopoietin agonists like eltrombopag, avatrombopag, and lusutrombopag are helpful in the management of thrombocytopenic patients.

Thrombocytopenia may be the first abnormality that gives a clue to the presence of CLD.^[4] Moore described thrombocytopenia as

a marker of advanced disease and an independent predictor of mortality. Thrombocytopenia is considered to represent an advanced stage of liver disease and poor prognosis. [2, 9, 10]. Amir A. Oamar et al. followed 213 patients with CLD over nine years to develop abnormal hematological indices. Most of the patients had baseline thrombocytopenia. The outcome of death or transplant could be predicted by baseline thrombocytopenia. When combined with leukopenia, baseline thrombocytopenia predicted death or transplant, mortality, and clinical decompensation.[11] Gotlieb et al. reported the decreasing trend of platelets over the years in the natural history of CLD may indicate advancing fibrosis and poor prognosis. [12] On the contrary, Manoj et al. found no correlation between spleen size, platelet count, and MELD score in cirrhotic patients studied.[13] In the patients setting. clinical with thrombocytopenia do not always bleed, and few even undergo liver transplantation uneventfully. In this conflicting situation, we thought of analyzing platelet count in cirrhotic patients and hence this study.

Aims of Study

To find out the prevalence of thrombocytopenia in patients with chronic liver disease

To evaluate the association of thrombocytopenia with the stage of liver disease.

Methodology

This was a cross-sectional observational study. All the patients with CLD attending outpatient and inpatient departments from March 2019 to November 2020 were enrolled in the study. Inclusion criteria: Age more than 18 years, who have the chronic liver disease at various stages. All the patients were evaluated clinically, biochemically, serologically, and radiologically. The basic demographic data

were collected. Socio-Economic Status (S. E. S.) was classified according to Kuppuswamy's scale into upper class (I), uppermiddle-class (II), lower middle class (III), upper lower class lower-class (IV),Anthropometric calculation: BMI was our main variable considered for nutritional status. The patients were classified as Underweight (BMI: < 18), Normal (BMI: 18.1 - 22.9), Overweight (BMI: 23 - 24.9) and Obese (BMI: > 25). Dry weight was calculated by subtracting 5% of the total weight for mild ascites, 10% for moderate ascites, 15% for severe ascites, 20% for severe ascites, and pedal edema. Disease severity grading: The severity of the disease is graded by Child-Pugh Class (C. P. C.) and Model for End-stage Liver Disease -(MELD-Na) Score. C. P. Sodium incorporates serum bilirubin, serum albumin, INR, ascites, hepatic encephalopathy. Grades of A (compensated cirrhosis), B, and C (Decompensated cirrhosis) were given. MELD-Na score incorporates serum bilirubin, serum creatinine, INR, serum sodium level, and whether the patient is on dialysis or not.

Table Number 1: Demographic and Study Specific Data

No.	Parameter	Number (%) /Range	Mean ± S.D.
		_	ა.ს.
1	Total number of	48	
	patients		
2	Sex-wise distribution		
	Males	43 (89.6)	
	Females	5 (10.4)	
3	Age-wise distribution	24 – 80	51.7
	(years)		±12.4
	20 – 39	6 (12.5)	
	40 – 59	32 (66.7)	
	> 60	10 (20.8)	
4	Socio-Economic		
	Status (S.E.S.)		
	Upper class	1 (2.1)	
	Upper middle class		
	Lower middle class		

No.	Parameter	Number	Mean ±
		(%) /Range	S.D.
	Upper lower class	27 (56.3)	
	Lower lower class	20 (41.7)	
5	Aetiology-wise distribution		
	Alcohol	32 66.7)	
	Hepatitis B	5 (10.4)	
	Hepatitis C	1 (2.1)	
	NAFLD	4 (8.3)	
	Unknown cause	6 (12.5)	
6	Duration of illness		
	< 12 months	6 (12.5)	
	13 – 59 months	30 (62.5)	
	> 60 months	12 (25)	
7	Body Mass Index (Kgs/M²)	13.1 – 36.8	21±15.0
	< 18 (Underweight)	14 (29.2)	
	18.1 – 22.9 (Normal)	22 (45.8)	
	23 – 24.9 (Overweight)	1 (2.1)	
	> 25 (Obese)	11 (22.9))	
8	Haematological values		
	Haemoglobin (gms/dl)	4.7 – 15.7	9.9 ± 2.3
	White blood cells (cell/mm³)	1000 – 25900	7953.5 ± 4947
	MCV fl	71 - 112	95.2 ± 10.6
	MCHC %	27 - 37	33 ±12.1
	MCH pg	20 - 38	31.6 ±4.4
	Platelets (cells/mm ³⁾	32000 - 393000	127020 ± 6915
	Normal > 150000	16 (33.3)	
	Mild thrombocytopenia (149999 – 75000)	22 (45.8)	
	Mod. thrombocytopenia (74999 – 50000)	6 (12.5)	
	Severe thrombocytopenia (< 49999)	4 (8.3)	
9	APRI	0.1 – 5.6	1.8 ± .2
	< 0.69	6 (12.5)	

No.	Parameter	Number (%) /Range	Mean ± S.D.
	> 0.7	42 (87.5)	
10	MELD- Na	8 - 34	18.7± 6.4
	< 15	20 (41.6%)	
	> 15.1	28 (58.3%)	
11	C. P. Class		
	Α	6 (12.5)	
	В	15 (31.3)	
	С	27 (56.3)	
12	I. N. R.	1 - 3.8	1.55 ± 0.5
	Up to 1.5	31 (64.6)	
	> 1.51	17 (35.4)	

Ethics

Ethical clearance was granted by the institutional ethical committee. The guidelines issued by the Indian Council of Medical Research were followed throughout the study. All the participants have explained the procedure of the study, and informed consent was taken.

Statistical analysis

Statistical analysis was done using Statistical Package for Social Sciences version 25. Data were analyzed using the chi-square test for categorical variables. A *p*-value < 0.05 was taken as statistically significant. The required sample size was 121. The limitation of our study is the small sample due to inevitable reasons. Hence, we used simple charts in our study for interpretation and avoided advanced statistical applications since they may not be appropriate for small samples.

Results

Forty-eight patients were included in this study. M:F 43:5; mean age 51.6 ±12.4 years. The basic demographic data and the study-specific data were presented in Table.1. The frequency-wise distribution of various grades of thrombocytopenia was given in Figure 1. The aetiology wise distribution of CLD was shown in Figure 2. Figure 3 depicts the negative association between

thrombocytopenia and MELD – Na Score, and figure 4 depicts the negative association between thrombocytopenia and C. P. Class. Among 48 patients, three patients had a variceal bleed, and six patients received 11 units of packed cells. In this study, no one developed bleeding that can be attributed to thrombocytopenia.

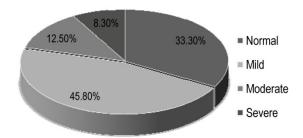


Figure 1: Frequency of Thrombocytopenia

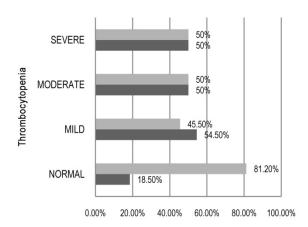



Figure 2: Frequency of Aetiology

	NORMAL	MILD	MODERATE	SEVERE
■ MELD Na > 15	81.20%	45.50%	50%	50%
■ MELD Na < 15	18.50%	54.50%	50%	50%
	■ MFLD Na > 15		■ MFLD N	la < 15

Figure 3: Thrombocytopenia and Meld Na Score

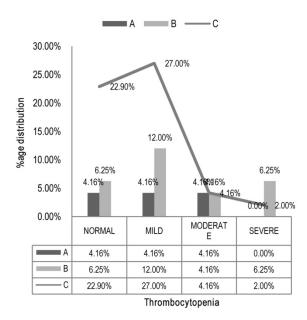


Figure 4: Thrombocytopenia and C.P. Class

Discussion

Prevalence

The prevalence of thrombocytopenia in our study was: mild - 34%, moderate 12.8%, and severe 8.5%; It is almost in line with other studies; Trimukhe et al. reported a 20% prevalence thrombocytopenia in liver cirrhosis in eastern Madhya Pradesh, India. [14] Vimal M. studied the most diverse population of hospitalized patients for causes of thrombocytopenia and reported prevalence of thrombocytopenia in CLD as 16.7%, which was next to infective aetiology. [15].

Association with the severity of disease

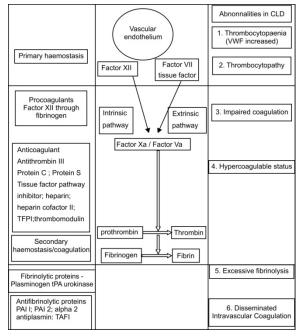
We studied the correlation between platelet number and C.P.C. and MELD-Na Score. We found no association between thrombocytopenia and C.P.C. and MELD-Na Score. We also did not encounter major bleeding events that can be attributed to thrombocytopenia in this study. Manoj et al., in their study of 146 cirrhotics, reported no association between thrombocytopenia and features of portal hypertension.^[13] On the other hand, thrombocytopenia is considered to

represent an advanced stage of liver disease and poor prognosis. [2, 4, 9, 10]

The platelets play a major role in the process of homeostasis and thrombosis. [16]. Their main role is in 1. Primary homeostasis the formation of loose platelet plug when platelets come in contact with injured vascular endothelium, the beginning of coagulation; 2. Secondary homeostasis or coagulation - the platelets provide a scaffold for various coagulative factors, which by series of enzymatic reactions lead to the formation of fibrin from fibrinogen and stabilize the platelet plug. Previously this was described as "cascade" and now "cellular." Abnormal platelet number and function occur in CLD. The various mechanisms of thrombocytopenia are discussed earlier. Impairment of platelet function, i.e., reduced adhesiveness and impaired aggregation, can be due to intrinsic and extrinsic factors. factors include The intrinsic decreased thromboxane A2 synthesis, acquired storage pool defects, altered transmembrane signal transduction, quantitatively decreased glycoprotein 1b (Gly - 1b), and αIIβ3 receptors consequence of proteolysis. The extrinsic factors are abnormal high-density lipoproteins, reduced hematocrit, and increased oxide endothelium-derived nitic prostacyclin. [16]. All these facts suggest that CLD is a hypocoagulable state which is not the real-world scenario. The reduction of platelet numbers and function may be compensated to some extent by an elevated Von Willebrand Factor (VWF). Thrombocytopenia in CLD is mostly mild to a moderate degree and, in general, not associated with clinically significant severe bleeding. In CLD, portal hypertension plays a major role during bleeding, and the role of hemostatic impairment is debatable. Tripodi A et al. investigated thrombin generation in the presence coagulation of inhibitors (thrombomodulin) in cirrhotic patients and found no significant difference from healthy

controls. [17]. The presently available diagnostic tests are of little use in identifying patients with a high risk of bleeding. There is also a lack of data in cases of prophylactic treatment with platelet concentrates before invasive procedures like liver biopsy or venous cannulation. The platelet count is not routinely corrected prior liver to transplantation. Giannini et al. expressed their optimism regarding the novel therapies for treating thrombocytopenia. [18]. In their view, "the novel therapies are promising, although it remains to be established whether treating thrombocytopenia may help improve liver disease associated with coagulopathy. Platelets also secrete many growth factors like PDGF (Platelet-Derived Growth Factor), TGF - B (Transforming Growth Factor - beta). Their role in liver injury and fibrosis is unclear. The various hemostatic abnormalities that can occur in CLD are as follows.[19,20]

- 1. Low platelet count: (thrombocytopaenia) the various possible mechanisms are already discussed.
- 2. Impaired platelet functions: (thrombocythaemia/thrombocytopathy) this is also discussed earlier.
- 3. Impaired coagulation: impaired synthesis of coagulation factors, vitamin K deficiency, dysfibrinogenaemia
- 4. Hypercoagulable state: increased factor VIII and VWF, low levels of protein C, S, and antithrombin.
- 5. Excessive fibrinolysis: impaired clearance of tPA (tissue Plasminogen Activator) and fibrinolytic enzymes, reduced synthesis of alpha 2 antiplasmin and TAFI (Thrombin Activatable Fibrinolysis Inhibitor).
- 6. Disseminated intravascular coagulation: This mechanism is debatable. This can be due to increased consumption of coagulative proteins and platelets, reduced clearance of activated clotting and reduced synthesis of coagulative factors, the release


of procoagulants from damaged hepatocytes.

Traditionally CLD is considered a disease of hypo-coagulable state based on conventional tests of coagulation which are abnormal. The conventional tests measure mainly procoagulants factors. In CLD, decreased levels of procoagulant factors are accompanied by a "commensurate decrease" in levels of anticoagulants like antithrombin III and protein C. The exact hemostatic balance in vivo in CLD cannot be estimated accurately. Shah. A. et al., in their study, reported that only 3 out of 128 CLD patients with abnormal coagulation parameters developed clinically significant bleeding. [21]. yet that was not statistically significant. (p = 0.061). None developed bleeding complications in the comparative group of 180 CLD patients with normal coagulation profile who underwent low and high-risk procedures. None of their patients received periprocedural corrections with plasma/platelet concentrates. concluded that deranged conventional parameters did not predict clinically significant bleeding in CLD, and invasive procedures could be safely carried out in CLD patients without prior correction of coagulation abnormalities. The periprocedural correction with transfusion also is a subject of debate.[19] Segal et al. also expressed the lack of evidence that abnormal coagulation tests predict the bleeding occurrence.[22]

There can be pathogenetic mechanisms other than coagulation parameters; such are 1. Sequelae of portal hypertension. 2. Endothelial dysfunction, 3. Development of endogenous heparin-like substances owing to bacterial infection or renal failure. Premkumar and Sarin reviewing the current concepts in coagulation profile, described the dynamic nature of coagulation and the role of neutrophil activation with release of interleukins 1, 6 and tumor necrosis factoralpha (TNF α). Figure. 5 Depicts the process

of coagulation in a concise way. In a stable CLD, hemostasis and coagulation pathways achieve a delicate "rebalance state" (new normal) which may be altered even by trivial insult.

Abbreviations

APRI - Aspartate Aminotransferase to Platelet Ratio Index; BMI - Body Mass Index expressed as Kg/M².

C. P. C. - Child-Pugh Class. CLD - Chronic Liver Disease. I. N. R. - International Normalized Ratio. MCH - Mean Corpuscular Haemoglobin expressed as pg. MCHC - Mean Corpuscular Haemoglobin Concentration expressed as %.

MCV - Mean Corpuscular Volume expressed as fl. MELD-Na Score - Model for End-stage Liver Disease - Sodium Score

NAFLD - Non-Alcoholic Fatty Liver Disease. S.E.S. - Socio-Economic Status. We adopted modified Kuppuswamy's scale of S.E.S. < Less than. > More than. ± plus-minus sign.)

This study has limitations. This study consisted of only 48 patients. As a hospital at a rural locality, the cases seen by us might not

match with liver transplant units that handle cases in a very advanced stage with various complications. Even though many studies proved the positive correlation between platelets and the advanced stage of CLD, only a handful of studies reported a negative correlation. This need not be due to selection bias only. The calculation of C.P.C. and MELD-Na Score does not incorporate platelet number, whereas APRI includes platelet number, which can be correlated with the stage of the disease. The level of coagulative factors is determined by the liver's synthetic function.

In contrast, the number of platelets is determined by liver function (thrombopoitic factor) and by the effect of splenomegaly and portal hypertension. Platelets and other coagulative factors are intertwined and cannot be considered in isolation in the pathogenesis of coagulation in CLD. The dynamic nature of the disease, which is already in a delicate rebalanced state, also has to be considered. The coagulopathy of CLD is a challenging field. The potential area of research can be the evaluation measures and unfolding the dynamic nature of the coagulation process.

References

- Afdhal, N., McHutchison, J., Brown, R., Jacobson, I., Manns, M., Poordad, F., Weksler, B. and Esteban, R., 2008. Thrombocytopenia is associated with chronic liver disease. Journal of Hepatology, 48(6), pp.1000-1007.
- Peck-Radosavljevic, M., 2016. Thrombocytopenia in chronic liver disease. Liver International, 37(6), pp.778-793
- 3. Nilles, K. and Flamm, S., 2020. Thrombocytopenia in Chronic Liver Disease. Clinics in Liver Disease, 24(3), pp.437-451.
- 4. Moore, A., 2019. Thrombocytopenia in Cirrhosis: A Review of Pathophysiology and Management Options. Clinical Liver Disease, 14(5), pp.183.
- 5. E Giannini, F Botta, P Borro, D Risso, P Romagnoli, A Fasoli, M,R Mele, E Testa, C Mansi, V Savarino, R Testa.Platelet count/spleen diameter ratio: proposal and validation of a non-invasive parameter to predict the presence of oesophageal varices in

- patients with liver cirrhosis. FREE.Gut Aug 2003, 52 (8) 1200-1205; DOI: 10.1136/gut.52.8.1200.
- Alam, R., Karim, A.B., Rukunuzzaman, M. et al. Non-endoscopic predictors of esophageal varices in children with chronic liver disease and their utility in resource-constrained countries. Indian J Gastroenterol 38, 310–316 (2019). https://doi.org/ 10.1007/s12664-019-00960-9.
- Giannini, E., 2006. Review article: thrombocytopenia in chronic liver disease and pharmacologic treatment options. Alimentary Pharmacology and Therapeutics, 23(8), pp.1055-1065.
- 8. Afdhal, N. and Esteban, R., 2007. Introduction: thrombocytopenia in chronic liver disease treatment implications and novel approaches. Alimentary Pharmacology & Therapeutics, 26, pp.1-4.
- Sigal, S., Mitchell, O., Feldman, D. and Diakow, M., 2016. The pathophysiology of thrombocytopenia in chronic liver disease. Hepatic Medicine: Evidence and Research, p.39.pp.778-793.
- Rubin MH, Weston MJ, Langley PG, White Y, Williams R. Platelet function in chronic liver disease: relationship to disease severity. Dig Dis Sci. 1979 Mar;24(3):197-202. doi: 10.1007/BF01308429. PMID: 456208.
- Amir A. Qamar, Norman D. Grace, Roberto J. Groszmann, Guadalupe Garcia-Tsao, Jaime Bosch, Andrew K. Burroughs, Cristina Ripoll, Rie Maurer, Ramon Planas, Angels Escorsell, Juan Carlos Garcia-Pagan, David Patch, Daniel S. Matloff, Robert Makuch, Gabriel Rendon, Incidence, Prevalence, and Clinical Significance of Abnormal Hematologic Indices in Compensated Cirrhosis, Clinical Gastroenterology and Hepatology, Volume 7,Issue 6, 2009, Pages 689-695, ISSN 1542-3565, https://doi.org/10.1016/j.cgh.2009.02.021.Qumar A.A.
- Gotlieb, N., Schwartz, N., Zelber-Sagi, S., Chodick, G., Shalev, V. and Shibolet, O., 2020. Longitudinal decrease in platelet counts as a surrogate marker of liver fibrosis. World Journal of Gastroenterology, 26(38), pp.5849-5862.
- Manoj Yadav, Krishnadas Devdas, Jose Mathew, Neeraj Kv, Aniruddha Pratap Singh. Correlation between spleen size, platelet count and MELD score in cirrhosis. Journal of Clinical and Experimental Hepatology, Vol. 8, S61.

- R Trimukhe, R Rai, NR Wankhade. Etiological and Clinical Spectrum of Liver Cirrhosis in Eastern Madhya Pradesh, India. Journal of Clinical and Experimental Hepatology, Vol.1, Issue 1, p18.
- Vimal M, Parveen S. Clinico pathological profile of spectrum of thrombocytopenic cases – a cross sectional study. Trop J Path Micro 2016;2(3): 146-151.doi: 10.17511/jopm.2016.i3.11.
- 16. Hugenholtz, G., Porte, R. and Lisman, T., 2009. The Platelet and Platelet Function Testing in Liver Disease. Clinics in Liver Disease, 13(1), pp.11-20.
- Tripodi A, Salerno F, Chantarangkul V, Clerici M, Cazzaniga M, Primignani M, Mannuccio Mannucci P. Evidence of normal thrombin generation in cirrhosis despite abnormal conventional coagulation tests. Hepatology. 2005 Mar;41(3):553-8. doi: 10.1002/hep.20569. PMID: 15726661.
- Giannini, Edoardo G; Savarino,
 Vincenzo. Thrombocytopenia in liver disease,
 Current Opinion in Hematology: September 2008 Volume 15 Issue 5 p 473-480 doi:
 10.1097/MOH.0b013e32830a97.
- Tripodi.A., 2017. Hemostasis in acute and chronic liver disease. semiars in liver disease, volume 37; pp. 28-32.
- Peck-Radosavljevic, M., 2007. Review article: coagulation disorders in chronic liver disease. Alimentary Pharmacology & Therapeutics, 26, pp.21-28.21.
- Shah, A., Amarapurkar, D., Dharod, M. et al. Coagulopathy in cirrhosis: A prospective study to correlate conventional tests of coagulation and bleeding following invasive procedures in cirrhotics. Indian J Gastroenterol 34, 359–364 (2015). HYPERLINK "https://doi.org/10.1007/s12664-015-0584-1" https://doi.org/10.1007/s12664-015-0584-1
- Segal JB, Dzik WH; Transfusion Medicine/ Hemostasis Clinical Trials Network. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review. Transfusion. 2005 Sep;45(9):1413-25. doi: 10.1111/j.1537-2995.2005.00546.x. PMID: 16131373.
- Premkumar M, Sarin SK. Current Concepts in Coagulation Profile in Cirrhosis and Acute-on-Chronic Liver Failure. Clin Liver Dis (Hoboken). 2020 Nov 3;16(4):158-167. doi: 10.1002/cld.976. PMID: 33163169; PMCID: PMC7609701.