Integrin α2β (ITGA2) Gene Polymorphism and Effects on Various Microvascular Complication among Subjects with Type 2 Diabetes

Rabeka Manikandan¹, Dr. Leema George², Dr. Vijay Viswanathan³

¹Research Associate, MV Hospital for Diabetes ²Scientist, MV Hospital for Diabetes ³Head and Chief Diabetologist, MV Hospital for Diabetes

Abstract:

We carried out a case-control study in a patient with type 2 diabetes mellitus (T2DM) to evaluate the association of ITGA2 gene polymorphisms microvascular in complications. The BglII gene polymorphism of the a2b1 Integrin, a platelet collagen receptor, has been suggested as a genetic risk factor for diabetic retinopathy. The association study included 125 patients genotyped by PCR-RFLP using sequence-specific primers for ITGA2 C807T variant and BglII restriction enzyme. The 125 participants were consists of 25 participants in each group with diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, newly diagnosed type 2 diabetes, and participants without diabetes.

The T/T genotype of the ITGA2 gene was associated with the diabetic retinopathy group (OR = 2.43, 95% CI 2.56 - 4.11, p= 0.001). Thus, the BglII genotype is related to the prevalence of retinopathy independent of the other variables, but it is not independently associated with the prevalence of nephropathy neuropathy. The ITGA2 polymorphisms were a risk marker for diabetic retinopathy among the various microvascular complications in type 2 diabetes. These ITGA2 gene polymorphisms would further help create an evidence base to support the markers for preventing the development of Diabetic Retinopathy among type 2 diabetes.

Keywords: BglII gene polymorphism of the a2b1 Integrin, Microvascular complication, Diabetic retinopathy, Diabetic Nephropathy,

Diabetic Neuropathy, Type 2 diabetes Association study Genetic risk factor

Introduction

Diabetes mellitus (DM) is a group of disorders characterized metabolic hyperglycemia due to insulin resistance or inadequate insulin secretion (Berg et al., 2002). Long-term complications of diabetes due to hyperglycemia might lead to retinopathy(DR), lead to vision loss; nephropathy(DNH), which associated with renal failure; neuropathy(DN), with risk of neural damage (Alghadyan, 2011). DR is one of the significant complications of DM in which the retina becomes severely damaged progressively, leading to vision loss and hence blindness (Saleem et al., 2015). Approximately one-half of people with diabetes have some form of peripheral neuropathy (PN),either polydiabetic or monodiabetic neuropathy (Dyck PJ et al., 1993). Diabetic nephropathy (DNH) is severe progressive a and complication of type 1 DM and type 2 DM. The integrin $\alpha 2$ subunit is a single-chain transmembrane polypeptide that pairs exclusively with the β1 subunit. In humans, a single copy of the α 2 gene (ITGA2) is present in the haploid genome located on the short arm of chromosome 5 (5p11-12) (acquelin B et al., 2001). Associations between the BglII polymorphism and the prevalence of DR had been reported in Japanese (Matsubara Y et al., 2000) and Caucasian (Petrovic MG et al., 2003) diabetic patients, and BglII (+) allele in these two ethnic groups is a risk factor for Diabetic retinopathy. This study has aimed to

determine whether the BglII gene polymorphism of the a2b1 integrin gene is a risk factor among microvascular complications with type 2 diabetes.

Patients and methods

This study was a hospital-based crosssectional study where a total of 125 (M: F 81:44) subjects were consecutively enrolled between October 2018- June 2019 in a tertiary care center for diabetes in Chennai, South India. The subjects were divided into five groups: Group-I Diabetes retinopathy (DR; n=25), Group-II -Diabetes Neuropathy (DN; n=25), Group-III - Diabetes nephropathy (DNH; n=25), Group-IV - Normal Glucose Tolerance (NGT; n= =25) Newly Diagnosed Diabetes Mellitus (NDM; n=25). Patients with type 1 diabetes, liver cancer, interferon therapy, end-stage renal disease, gestational diabetes, and those unwilling to sign the consent form were excluded from the study. Anthropometric measurements, including height and weight, were obtained using standardized techniques. The body mass index (BMI) was calculated as the weight in kilograms divided by the square of height in meters. Fasting plasma glucose (FPG) (glucose oxidaseperoxidase method), serum cholesterol oxidase-peroxidase-amidopyrine (cholesterol method), triglycerides serum (glycerol oxidase-peroxidase-amidopyrine phosphate method), high-density lipoprotein cholesterol (HDL-C) (direct method-polyethylene glycolpretreated enzymes), and creatinine (Jaffe's method) were measured using a fully automated biochemistry. Glycated hemoglobin A1c (HbA1c) was estimated by the Immuno turbidimetry method (Roche Diagnosis). All the biochemical investigations were done in a NABL accredited laboratory.

Isolation of DNA from the peripheral blood cells was performed using the Qiagen Kit method. The isolated DNA was subjected to PCR amplification by using a Bio-Rad Thermal cycler. The Coding sequences of this

BglII polymorphism of ITGA2 gene was amplified from the genomic DNA, using specific forward Sequences GTCATTTCAGGCCATCGTG and reverse GGTGTGCAAGTTAATAAAGTGACG primers obtained from the xcleris lab, India PCR conditions of 34 cycles in this study were as follows: the first two cycles were 94°C for 1 minute, 69°C for 1 minute, and 72°C for 1 minute; the second 2 cycles were 94°C for 1 minute, 67°C for 1 minute, and 72°C for 1 minute; the remaining 30 cycles were 94°C for 1 minute, 65°C for 1 minute, and 72°C for 1 minute. Amplified DNA was digested with BglII restriction enzyme (BglII) at 37°C for overnight (2uL 10× buffer, 1.0uL BglII, 7uL distilled water, and 10uL PCR product). The expected product sizes after digestion were: normal homozygote CC 580 bp, 104 bp; mutant homozygote TT, 340 bp, 240 bp; and heterozygote CT, 580, 340, and 240 bp, respectively.

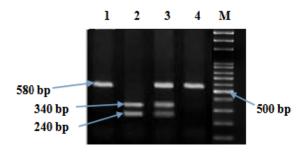


Fig 1- RFLP of ITGA2 gene

Statistical analysis

Data entry was done in Microsoft Excel. IBM SPSS (v 11.5; IBM Corp, Armonk, NY) was the statistical software used and Epi Calc 2000 (Brixton Health, UK). Comparison of the demographic data between the five study groups was made using the x2-test and student's t-test. The polymorphism was tested for deviation from the Hardy- Weinberg equilibrium by comparing the observed and expected genotype frequencies using the x2-test. For SNP analysis, the frequencies of the genotype and alleles of the itga2 BgIII

polymorphism were compared between the five groups using the x2 - test, and the odds ratios (ORs), Relative Risk (RR), and 95% confidence intervals (CIs) were calculated using unconditional logistic regression analysis. A p-value <0.05 was considered to be statistically significant

Result

Biochemical analysis

Among the groups showed significant in fasting Postprandial and HbA1c while comparing with NGT with include BMI in Neuropathy group and eGFR, Urea, HDL and LDL in Nephropathy group also showed significant. While comparing with NDM VLDL, Non-HDL BMI Showed significance in all groups in addition to urea, creatinine, eGFR, HDL, LDL in the Nephropathy group, and Neuropathy Clinical parameters like eGFR, HDL, and LDL showed significantly.

Genotype analysis

Table -1 Genomic and allele frequency between Diabetic Retinopathy and Control

Genotype	Retinopathy	Neuropathy	Nephropathy	NGT	NDM
frequency	(n=25)	(n=25)	(n=25)	(n=24)	(n=24)
СС	2	18	13	20	15
	(8%)	(72%)	(52%)	(80%)	(60%)
СТ	9 (36%)	4 (16%)	8 (32%)	4 (16%)	5 (20%)
TT	14	3	4	0	4
	(56%)	(12%)	(16%)	(0%)	(16%)
Allele Frequency					
С	11	40	34	44	35
	(22%)	(80%)	(68%)	(91%)	(72%)

The ITGA2 *BglII* polymorphism is located in intron 7, and the result is the conservative amino acid substitution from Cytosine to Thymine. Genotypic analysis Table -1 showed significant increase in presence of T allele in Diabetic Retinopathy (TT=14 (56%), when compared to the other group like

Diabetic Neuropathy (TT=3 (12%), Diabetic Nephropathy (TT= 4 (16%), NGT (TT= 0 (0%) and NDM (TT= 4 (16%). Allele-wise analysis showed a higher frequency of 'T' allele in the Diabetic Retinopathy = 37 (74%) compared to that of other like Diabetic Neuropathy=10 (20%), Diabetic Nephropathy=16 (32%), NGT=4 (9%), NDM=4 (9%).

Comparing Diabetic Retinopathy with NGT Table-2 Genomic and allele frequency between Diabetic Retinopathy and Control

Diabetic Retinopathy Vs. Control (NGT)								
Genotype	NGT	Retinopathy	OR	95% CI	P-			
					Value			
CC	20	2	57.5	9.5-	0.0065			
				34.8				
СТ	4	9	0.35	0.09-	0.132			
				1.37				
TT	0	14	0.01	0.009-	0.0001			
				0.29				
Allele								
Frequency								
T	11	40	37.00	5.86-	0.001			
				12.96				

In Table -2, the BglII polymorphism is the statistical analysis for the genotype and allele frequencies for ITGA2 (C807T C<T) in Diabetic retinopathy and control individuals. Out of 24 control individuals, 80% were CC homozygous, 0% were TT homozygous, and the remaining 16% were heterozygous CT. The genotype distribution in the Diabetic retinopathy population was as follows: Out of 25 Diabetic retinopathy, 8% were homozygous for the ancestral (non-risk) CC allele, 56% were homozygous for TT (risk) allele, while 36% subjects were heterozygous CT. The allele frequency for Diabetic Retinopathy cases was 11 (22%) for C and 37 (74%) for T, whereas in healthy controls, it was 44 (91%) and 4 (9%), respectively. Logistic regression analysis of the genotype data under the dominant model (DM) and recessive model (RM) revealed association of the CC, CT and TT genotypes (Odds Ratio (OR) =57.5, 95% confidence =9.5-347.8, p interval (CI) < 0.0001),(OR = 0.35, 95% CI = 0.09-1.37, p = 0.132) and (OR = 0.01, 95% CI = 0.009 - 0.29, p = 0.005)respectively with Diabetic Retinopathy. The risk allele frequencies of the T allele were compared between DR cases and controls, and significant differences (OR = 37.00,CI = 10.868-125.96, p=0.001) were observed. Thus, the BglII genotype is associated with the prevalence of retinopathy independent of the other variables, but it is not independently associated with the prevalence of nephropathy and neuropathy.

Conclusion

Several studies have investigated the increased risk of T2DM associated with ITGA2, that the BglII gene polymorphism of the a2b1 integrin gene can be considered a risk factor for diabetic retinopathy (Petrovic et al., 2003). In conclusion, we can confirm the association of the ITGA2 gene polymorphism with Diabetic retinopathy in the population of India. We studied the association of BglII polymorphism of the ITGA2 gene with Microvascular complications for the first time. Our findings suggest that this polymorphism is highly associated with Diabetic retinopathy compare with other microvascular complications like Diabetic Neuropathy and Diabetic Nephropathy in the population. However, the predictive value of ITGA2 C807T polymorphism has to be validated by well-designed further studies with more significant study participants.

References

- Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. W H Freeman.
- Duggirala, R., Blangero, J., Almasy, L., Dyer, T. D., Williams, K. L., Leach, R. J., & Stern, M. P. (1999). Linkage of Type 2 Diabetes Mellitus and of Age at Onset to a Genetic Location on Chromosome 10q in Mexican Americans. The American Journal of Human Genetics, 64(4), 1127–1140.

- Olefsky J.M., Taylor S.I., and D. L. L. (2004). Diabetes Mellitus; A Fundamental and Clinical Text, 3rd edition, Lippincott William and Wilkins Philadelphia USA pp 117-159
- Alghadyan, A. A. (2011). Diabetic retinopathy An update. Saudi Journal of Ophthalmology, 25(2), 99– 111
- 5. Papaspyros, N. S. (1964). The history of diabetes mellitus, Page 213, Volume 1964. G. Thieme
- 6. Nwaneri, C. (2015). Diabetes Mellitus: A Complete Ancient And Modern Historical Perspective.
- 7. Medvei, V. C. (2012). A History of Endocrinology. Springer Science & Business Media.
- 8. Poretsky, L. (2010). Principles of diabetes mellitus. Principles of Diabetes Mellitus, 1–887.
- 9. Pirot, P., Cardozo, A. K., & Eizirik, D. L. (2008). Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arquivos Brasileiros de Endocrinologia E Metabologia, 52(2), 156–165.
- 10. Pickup, J. C., & Williams, G. (2003). Textbook of Diabetes. Internal Medicine (Vol. 1).
- 11. Kritzik M, Annis DS, et al.: Hereditary variation in platelet integrin 21 copy number is associated with two silent polymorphisms in the 2 gene coding sequence. Blood 1997, 89:1939–1943.
- 12. Kritzik M, Savage B, Nugent DJ, et al.: Nucleotide polymorphisms in the alpha 2 gene define multiple alleles associated with differences in platelet alpha 2 beta 1. Blood 1998, 92:2382–2388.
- 13. Plow EF, Meller J and Byzova TV: Integrin function in vascular biology: A view from 2013. Curr Opin Hematol 21: 241-247, 2014.
- 14. Saboor M, Ayub Q, Ilyas S and Moinuddin: Platelet receptors: An instrumental of platelet physiology. Pak J Med Sci 29: 891-896, 2013.
- 15. Matsubara Y, Murata M, Maruyama T, et al.: Association between diabetic retinopathy and genetic variations in alpha2beta1 Integrin, a platelet receptor for collagen. Blood 95: 1560-1564, 2000.
- 16. Petrovic MG, Hawlina M, Peterlin B and Petrovič D: BgIII gene polymorphism of the alpha2beta1 integrin gene is a risk factor for diabetic retinopathy in Caucasians with type 2 diabetes. J Hum Genet 48: 457-460, 2003.
- 17. Kunicki TJ, Kritzik M, Annis DS, Nugent DJ. Hereditary variation in platelet integrin alpha 2 beta 1 density is associated with two silent polymorphisms in the alpha 2 gene coding sequence. Blood. 1997;89(6):1939-43. PMID:9058714.

- 18. Kritzik M, Savage B, Nugent DJ, Santoso S, Ruggeri ZM, Kunicki TJ. Nucleotide polymorphisms in the alpha 2 gene define multiple alleles that are associated with differences in platelet alpha 2 beta1 density. Blood. 1998; 92(7):2382-8. PMID:9746778.
- Association of Alpha-2 Beta-1 Integrin Polymorphism with Retinopathy in Diabetic Patients Nadeem Afzal1*, Nagi AH2, Muhammad
- Imran3, Abu Zafar4, Amtul Musawar5, Romeeza Tahir1, Sarwar Abbas1, Afia Abbas1, Shakeela Zaman6 and Shah Jahan1 2012.
- Lu, J. X., Lu, Z. Q., Zhang, S. L., Zhi, J., Chen, Z. P., & Wang, W.X.Polymorphism in integrin ITGA2 is associated with ischemic stroke and altered serum cholesterol in Chinese individuals. Balkanmedical journal, 2014; 31(1): 55.